Comments on "On the Indefinite Quadratic Fractional Optimization with Two Quadratic Constraints"

نویسندگان

  • Saeed Fallahi
  • Maziar Salahi
چکیده

In this paper, we consider minimizing the ratio of two indefinite quadratic functions subject to two quadratic constraints. Using the extension of Charnes– Cooper transformation, we transform the problem to a homogenized quadratic problem. Then, we show that, under certain assumptions, it can be solved to global optimality using semidefinite optimization relaxation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...

متن کامل

Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints∗

In this paper, we focus on fractional programming problems that minimize the ratio of two indefinite quadratic functions subject to two quadratic constraints. Utilizing the relationship between fractional programming and parametric programming, we transform the original problem into a univariate nonlinear equation. To evaluate the function in the equation, we need to solve a problem of minimizi...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

Solving A Fractional Program with Second Order Cone Constraint

We consider a fractional program with both linear and quadratic equation in numerator and denominator  having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a  second order cone programming (SOCP)  problem.  For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2014